Infrequently Noted

Alex Russell on browsers, standards, and the process of progress.

Can You Afford It?: Real-world Web Performance Budgets

TL;DR: performance budgets are an essential but under-appreciated part of product success and team health. Most partners we work with are not aware of the real-world operating environment and make inappropriate technology choices as a result. We set a budget in time of <= 5 seconds first-load Time-to-Interactive and <= 2s for subsequent loads. We constrain ourselves to a real-world baseline device + network configuration to measure progress. The default global baseline is a ~$200 Android device on a 400Kbps link with a 400ms round-trip-time ("RTT"). This translates into a budget of ~130-170KB of critical-path resources, depending on composition -- the more JS you include, the smaller the bundle must be.

We've had the pleasure of working with dozens of teams over the past few years. This work has been illuminating, sometimes in very unexpected ways. One of the most surprising results has been the frequent occurrence of "ambush by JavaScript":

We need a new term for the business-opportunity wastage that modern front-end development has created.

Maybe "ambush by JS"?

Business leaders who green-light the development of Progressive Web Apps frequently cite the ability to reach new users with near-zero friction as a primary motivator. At the same time, teams are reaching for tools which make achieving this goal impossible. Nobody is trying to do a poor job, and yet the results of a "completed" PWA project often require weeks or months of painstaking rework to deliver minimally acceptable performance.

This rework delays launch which, in turn, delays gathering data about the viability of a PWA strategy. Teams we aren't able to work with directly sometimes do not catch these problems until it's too late, launching experiences which are simply unusable for all but the wealthiest.

Setting A Baseline

Teams that avoid unpleasant surprises tend to share a few traits:

These properties build on each other: it's difficult to get the space you need to plan to do things well without decision makers who value user experience and long-term business value. Teams with this support are free to set performance budgets, do "bakeoffs" between competing approaches, and invest in performance infrastructure. They're also more able to go against the "industry standard" grain when popular tools prove to be inappropriate.

Performance budgets keep everyone on the same page. They help to create a culture of shared enthusiasm for improving the lived user experience. Teams with budgets also find it easier to track and graph progress. This helps support executive sponsors who then have meaningful metrics to point to in justifying the investments being made.

Budgets set an objective frame for determining which changes to the codebase represent progress and which are regressions from the user perspective. Without them it's impossible to avoid slipping into the trap of pretending you can afford more than you can. Very rarely have we seen a team succeed that doesn't set budgets, gather RUM metrics, and carry representative customer devices.

Partner meetings are illuminating. We get a strong sense for how bad site performance is going to be based on the percentage of engineering leads, PMs, and decision makers carrying high-end phones which they primarily use in urban areas.

Doing better by users involves 2 phases:

Never before have front-end teams enjoyed access to such good performance tools and diagnostic techniques, yet poor results are the norm. What's going on here?

JS Is Your Most Expensive Asset

One distinct trend is a belief that a JavaScript framework and Single-Page Architecture (SPA) is a must for PWA development. This isn't true (more on that in a follow-up post), and sites which are built this way implicitly require more script in each document (e.g., for router components). We regularly see sites loading more than 500KB of script (compressed). This matters because all script loading delays the metric we value most: Time to Interactive. Sites with this much script are simply inaccessible to a broad swath of the world's users; statistically, users do not (and will not) wait for these experiences to load. Those that do experience horrendous jank.

We're often asked "what's the big deal about 200KB of JS, some of our images are that size?" A good question! Answering it requires an understanding of how browsers process resources (which differs by type) and the concept of the critical path. For a timely introduction, I recommended Kevin Schaaf's recent talk.

Late-loading JavaScript can cause "server-side rendered" pages to fail in infuriating ways. This uncanny-valley effect is the reason we focus on when pages become reliably interactive.
Consider a page like:
<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="/styles.css">
&lt;script src="/app.js" async&gt;&lt;/script>
</head>
<body>
<my-app>
<picture slot="hero-image">
<source
srcset="img@desktop.png, img@desktop-2x.png 2x"
media="(min-width: 990px)">

<source
srcset="img@tablet.png, img@tablet-2x.png 2x"
media="(min-width: 750px)">

<img
srcset="img@mobile.png, img@mobile-2x.png 2x"
alt="It's a perfectly cromunlent word!">

</picture>
</my-app>
</body>
</html>

The browser encounters this document in response for a GET request to https://example.com/. The server sends it as a stream of bytes and when the browser encounters each of the sub-resources referenced in the document, it requests them.

For this page to be done loading it needs to be responsive to user input -- the "interactive" in "Time to Interactive". Browsers process user input by generating DOM events that application code listens to. This input processing happens on document's main thread, where JavaScript runs.

Here are some operations that can happen on other threads, allowing the browser to stay responsive:

These operations, however, must happen on the main thread:

If our example document wasn't reliant on JavaScript to construct the <my-app> custom element, the contents of the document would likely be interactive as soon as enough CSS and content was available to render meaningfully.

Script execution delays interactivity in a few ways:

Images, on the other hand, do not block the main thread, do not block interaction when parsed or rasterized, and do not prevent other parts of the UI from getting or staying interactive. Therefore, while a 150KB image won't appreciably increase TTI, 150KB of JS will delay interactivity by the time required to:

These steps are largely serialized.

If script execution could stay under 50ms for a bundle this large, TTI would not be delayed, but that's not feasible. 150KB of gzipped JavaScript expands to roughly 1MB of code, and as Addy documented, that's going to take more than a second on most of the world's phones not including the time to fetch it.

JavaScript is the single most expensive part of any page in ways that are a function of both network capacity and device speed. For developers and decision makers with fast phones on fast networks this is a double-whammy of hidden costs.

Global Ground-Truth

Deciding what benchmark to use for a performance budget is crucial. Some teams and businesses know their audience intimately and can make informed estimates about the devices and networks current and prospective users are on. Most, however, do not have such a baseline easily to-hand. Where to start?

Two numbers set the stage:

The median user is on a slow network. Just how slow is a matter of some debate.

Our metrics at Google show a conflicted picture (which I'm working to get to clarity on). Some systems show median RTTs near ~100ms for 3G users. Others show the median user unable to transmit and receive an individual packet in less than 400ms in some major markets.

I suggest we should be conservative. Contended, over-subscribed cells can make "fast" networks brutally slow, transport variance can make TCP much less efficient, and the bursty nature of web traffic works against us.

Googlers enjoy access to a simulated "degraded 3G" network to help validate the behaviour of their apps under these conditions. It simulates a link with a 400ms RTT and 400-600Kbps of throughput (plus latency variability and simulated packet loss). Given the conflicted data we see across our other systems, this seems about right as a baseline.

Simulated packet loss and variable latency, however, can make benchmarking extremely difficult and slow. The effect of a lost packet during DNS lookup can be a difference of seconds, making it frustrating to compare before/after for changes at development time. Our baseline, then, should probably trade lower throughput/higher-latency for packet loss. What we lose in real-world fidelity, we gain in repeatability and the ability to compare across changes and across products. There's much, much more to say about the effects of DNS, TLS, network topology, and other factors. For those who want to go deeper on this, I highly recommend Ilya Grigorik's "High Performance Browser Networking". The coverage of RRC alone makes it worth your time.

Back to our baseline, we now have a sense for what our simulated network conditions should be: 400ms RTT, 400Kbps bandwidth. What about the device itself?

At last year's Chrome Dev Summit I discussed some of the thermal and power-limiting factors that create a huge disparity between desktop and mobile device performance. Add onto that the yawning chasm between low-end and high-end device performance thanks to chip design factors like cache sizes, and it can be difficult to know where to set a device baseline. Thankfully, this is somewhat easier than network speeds: more than half of American mobile users are on Android devices. As you look abroad, worldwide smartphone shipments are (and for the past 5 years have been) overwhelmingly Android-based. The average selling price for those devices is falling in most geographies, driven by the ubiquity of Android and relentless price drops within that ecosystem. This, in turn, drives the single most important trend in setting the global web performance budget hardware baseline: the next billion users will largely come online when they can afford to. This will drive declines in smartphone average-selling-price ("ASP") in emerging markets for the foreseeable future. This, in turn, means that all improvements to transistor-count-per-dollar will translate into lower selling prices, not faster devices (on average).

The true median device from 2016 sold at about ~$200 unlocked. This year's median device is even cheaper, but their performance is roughly equivalent. Expect continued performance stasis at the median for the next few years. This is part of the reason I suggested the Moto G4 last year and recommend it or the Moto G5 Plus this year.

Putting it all together, our global baseline for performance benchmarking is a:

For most technologists, building applications for this environment might as well be farming on Mars. Luckily, this configuration is available on webpagetest.org/easy, meaning we can re-create these conditions here on earth, any time we like.

The Affordability Calculation

The last thing we need for our perf budget is time. How long is too long?

I like Monica's definition:

The Monica Perf Test™: if you wouldn't make eye contact with a stranger for the time it takes your web app to first paint, it's too slow.✌️💫

...but that's more qualitative than quantitative. Numerically, we'd prefer every page load occur in under a second (see RAIL). That's not possible on real-world networks, so we've set the following Time-to-Interactive (TTI) metric goal with partners:

We now have everything we need to create a ballpark perf budget for a product in 2017.

First Load

Working backwards from time, network conditions, and the primary stages of the critical path, we get a few interesting results. We can start with our first-load budget of 5 seconds and begin to calculate how much transfer we can afford.

First we subtract 1.6 seconds from our budgets for DNS lookup and TLS handshaking, leaving us 3.4s to work with.

Then, we calculate how much data we can send over this link in 3.4 seconds: 400 Kbps = 50KB/s. 50KB/s * 3.4 = 170KB.

NOTE: This discussion is sure to infuriate competent network engineers. Previous versions of this article discussed slow-start, bdp, tcp window scaling, and the like. They were commensurately difficult to follow. Simplifying has relatively little impact on the overall story, so those details are elided.

Modern web applications are largely composed of JS, meaning we also need to subtract the amount of time the JS needs to parse and evaluate. The gzip compression factor for JS code is between 5x and 7x. 170KB of JS then becomes ~850KB-1MB of JS which, based on earlier estimates, may take a second to run (presuming it doesn't do any expensive DOM work, which of course it will). Playing with these numbers a little bit, we can get back below 3.4s of download and eval by limiting ourselves to 130KB of JS transferred on the wire.

One last wrench in the works: if any of our critical-path resources come from a different origin (e.g., a CDN), we need to subtract connection setup time for that origin (~1.6s) from the budget, further limiting how much of our 5s we actually get to can spend on network transfer and client-side work.

Putting it all together, under ideal conditions, our rough budget for critical-path resources (CSS, JS, HTML, and data) at:

This gives us the ability to consider the single most pressing question in front-end development today: "can you afford it?"

For example, if your JS framework takes ~40KB of transfer on a JS-heavy site (which gets a budget of 130KB thanks to JS eval time), you're left with only 90KB of "headroom". Your entire app must fit into that space. A 100KB framework loaded from a CDN is already 20KB over budget.

Think back: your framework of choice might be 40K, but what about that data system? The router you added? Suddenly 130KB doesn't seem like a lot when you also need to include data, templates, and styles.

Living on a budget means constantly asking yourself "can I really afford this?"

Second Load

In an ideal world, all page loads happen in under a second, but for many reasons that's often not feasible. Therefore we're going to give ourselves a bit of a breather and budget 2 seconds for second (third, fourth, etc.) load.

Why not 5? Because we shouldn't need to ever go to the network to get our app's UI booted once we've visited it the first time. Service Workers and "offline first" architectures enables us to put interactive pixels on screen without ever touching the network. This is the key to achieving reliable performance.

Two seconds is forever in modern CPU terms, but we still need to spend it wisely. Factors we need to account for include:

Every app I've seen that hits a 5s initial load and implements offline-first correctly stays under this 2s budget, and sub 1s is possible! But getting to offline-first is a huge challenge for many teams. Architecting to save last-seen user data locally, cache app resources in a reliable and coherent way, and juggle application code upgrades using the Service Worker lifecycle can be a major undertaking.

I'm looking forward to tools continuing to evolve in this area. The most comprehensive bootstrap I know of today is the Polymer App Toolbox, so if you're not sure where to start, start there.

130-170KB...Surely You're Kidding!?!

Many teams we talk to wonder if it's even possible to deliver something useful in as little as 130KB. It is! the PRPL pattern shows the way through aggressive code-splitting based on route awareness, Service Worker caching of granular (subsequent-page) resources, and clever use of modern protocol enhancements like HTTP/2 Push.

Taken together, these tools enable us to deliver functional, modern experiences in under 100KB for the critical path.

Sadly, it's still sort of difficult to tell from a specific trace which parts of the page load are critical-path resources for TTI and which aren't, but I'm optimistic that tools will evolve quickly to help us understand this key metric.

Regardless, we know it's possible, even without giving up on frameworks entirely. Both Wego and Ele.me are built with modern tools (Polymer and Vue, respectively) and help users complete real transactions today. Most apps are less complex than they are. Life on a budget isn't starvation.

Tools for Teams on a Budget

Getting under-budget is hard, but the benefits to the business and to users are immense. Less often discussed are the benefits to engineering teams and their leaders. No tech-lead or PM wants to be on the wrong side of an executive who walks into their area with a phone asking "so why is this so slow when I'm on vacation?"

This isn't theoretical.

I've seen teams that have just finished re-building on a modern tech stack cringe for an hour as we walk them through the experience of using their "better", "faster" experiences under real-world conditions.

Everyone loses face when the product fails to meet expectations. Months of unplanned performance fire-fighting delay the addition of new features and have a draining effect on team morale. When performance becomes a crisis, mid-level managers get caught between being the "shit umbrella" their teams count on and crushing self doubt. Worse, they may begin to doubt their team. The other side of a performance crisis is a long road; how can the organisation trust the team to deliver a quality product? Can they trust the TLs to recommend new technology or large re-investments? Recriminations follow. This is a terrible experience, specifically for developers who are too often on the receiving end of incredible pressure to "fix it", ASAP -- and "it" may be a core technology the product is built on.

In the worst cases, the product may be unfixable on a short enough timeframe to help the business. A lot of progress is Darwinian and for startups and small teams, betting on the wrong stack without the benefit of a long runway can be fatal. Worse, this can go un-diagnosed for a long, long time. If the whole team carries the latest iOS devices on fast, urban networks and the product's economics are premised on growing a broad-based audience, the failure of that audience to arrive barely makes a sound.

Performance isn't the (entire) product, of course. Lots of slow or market-limited products do incredibly well. Having a unique service that people want (and will go out of their way for) can override all of these other concerns. Some folks even succeed in App Stores where friction-to-acquire an experience is intense. But products in competitive marketplaces need every advantage.

Some specific tools and techniques can help teams that adopt a performance budget:

Success in combating bloat often means turning warnings into hard errors. Teams with CI or commit-queue systems should strongly consider disallowing commits that break the (performance) bank.

For teams starting fresh, my strong recommendation is to start with a stack that embeds strong opinions about app structure, code splitting, and build targets. The best of those today are:

Whatever tools your team chooses, a budget is essential. Without one, even the most advanced, "lightweight" frameworks can easily create bloated, unusable apps. Starting from the global baseline and only increasing the budget based on hard numbers is the best way I know of to ensure your project lands well for everyone.

Endnotes

In the interest of time and space, discussion of future-friendly architectures will have to wait for another post. The curious can dig into Service Workers, Navigation Preload, and Streams. Their powers combined are going to fundamentally transform the optimal page-load for 2018 and beyond.

Lastly, thanks to everyone who reviewed early drafts of this post, including (but not limited to): Vinamrata Singal, Paul Kinlan, Peter O'Shaughnessy, Addy Osmani, and Gray Norton. Hopefully their valiant attempts to direct this article away from error were not overcome by my talent in adding it.

Web Components: The Long Game

Mikeal Rogers reached out last week to talk about Web Components, which surprised me, but his follow-up blog post is essential, timely reading.

Dimitri Glazkov, Alex Komoroske, and I started the project that designed and (for many years) iterated on Web Components with a few primary goals in mind:

All of this was wrapped up in our project's mantra: "say what you mean".

Our position was (and is) that developers shouldn't need to write the word function when they meant class or module and they shouldn't have to type <div class="tree-control"> or torture existing HTML elements to "mean" something they clearly did not. JavaScript programmers should be able to instantiate components naturally (new TreeControl(...)) and that shouldn't need to be an exclusive choice that implicitly forces web developers to pick JS over HTML or vice versa. A componentized future should not exclude those who compose UIs in HTML. That means components need to participate in the built-in deserialization system: the HTML parser.

Web developers shouldn't need build steps or an expensive runtime systems to re-create parsing. Nor should typing <tree-control> in your markup require a specific framework to "fake" parser integration with custom, per-framework timing and lifecycle management (a source of much incompatibility).

When Different Isn't Better

When we started the "Parkour" project in 2010, members of the team had built something like a dozen JavaScript frameworks or component systems between them and those systems were powering the front-ends of billion-dollar businesses and used by thousands of engineers every day.

None of them could meaningfully share components or code.

Each of these tools became inadvertently totalizing when used at scale. The cost of the framework code was a major concern, and pulling in components from different frameworks implied pulling in all of the support code required to bootstrap the component models of each system. Maybe that would be palatable for a particularly juicy component (data grid, anyone?), but interop was more frequently stymied by the need to wrap components. The decision of which abstraction to interoperate on implicitly creates a situation where teams must pick "their" framework and then make components from other systems work within those terms.

It doesn't take a lot of familiarity with the history of JS frameworks to note a wide diversity amongst successful tools on a number of important axes: the most productive and efficient way to instantiate components, how and when configuration takes place, how data and configuration are updated, the lifecycle of the component, ownership of (and access to) managed DOM nodes, markup integration, and much more. Templating systems are relatively pluggable, but the thing about frameworks is that they set the terms of everything that happens in components. When frameworks make different choices (and they do), compatibility is the first casualty.

At this drilled-in level, we will no doubt endlessly debate these choices. Businesses trying to make durable investments, however, are forgiven for growing weary of the predictable outcomes: teams decide on the "best" tool, invest heavily in building (or using) components, only to discover that the next app or the next team makes a different choice. This creates a compatibility quandary as soon as anyone wants to re-use anything. Just upgrading from Version N of a framework to Version N+1 frequently creates this sort of problem. The painstaking work of building accessibility, shared styles, and reasonable performance into components often looks like good money after bad.

At a fundamental level, this happens because when JavaScript is the component model, all the choices are up for grabs. It might seem like there's some "lower level" interop to be gained by modeling everything in pure JS (not DOM), but this is a mirage. I'm not sure what the correct model is for this recipe for incompatibility, but the complexity of achieving compat seems intuitively to be O(N^2) or worse. Every major decision represented within a framework makes reaching compatibility with another framework exponentially harder. This is multiplied by the set of hopefully-interoperable frameworks.

Finally, the incentives of framework authors are not aligned with compatibility. Competition between JavaScript frameworks is fierce, and every tool that thinks it will "win" has a natural inclination to grow the set of components that are exclusive to the framework. A large, high quality control set is a compelling selling point, after all.

There are also costs associated with compatibility. First, compatibility requires stability and a commitment to a specific design. This ham-strings framework authors who (rightly) value the ability to change their minds and adapt to better ways of approaching problems. Second, the overhead of compatibility testing for the matrix of frameworks detracts from other priorities (performance, accessibility, "developer experience") that frameworks are judged on; particularly at adoption time. Where would this time-consuming work take place? Conference calls? How often? Who's organising and paying for it?

No matter how much businesses want the ability to reuse components, JavaScript frameworks as we know them are never going to deliver interop. It's called "framework churn" and not "component mixing" because to adopt the new thing the old one must be plowed under.

Wither Interop?

It's sobering to think that the endless framework churn has been with the JavaScript community for as long as we've been writing sizable apps. For me, that's more than 15 years. The evidence has been heard and verdict is in: there is no such thing as component longevity with interoperability so long as our abstraction is JS.

The deep reason for this is that all modern JavaScript UI frameworks manage two trees:

  1. The logical tree of high-level components ("widgets") which developers use to construct their applications
  2. An internal tree of managed DOM for each widget

Frameworks are in the business of providing the abstraction for the logical tree, a system for creating and managing widget internals, and (most importantly), systems for preventing widget internals from leaking into the logical tree. Until now, the only game in town for creating this encapsulation has been to create a tree that's parallel to the one exposed in the DOM.

Before the arrival of Shadow DOM, there was no way to avoid airing all of a component's dirty laundry (managed DOM) in the overall tree structure of the document. Component authors need to operate on the bits of DOM that they "own" and manage, whereas component users usually want to avoid seeing, touching, or interfering with the implementation details of the components they're composing into an app.

Custom Elements and Shadow DOM eliminate the need for a separate tree and traversal system. Together, they allow the developer to surface their component as a first-class citizen within the existing contract (HTML and the resulting DOM) whilst hiding the implementation details from casual traversal and interference. This is a trick that the built-in elements (think <video> or <select>) have been able to do forever, but until now it has not been available to us muggles.

Web Components represent something fundamentally different from the status quo. No other approach is able to actually eliminate the need for parallel trees.

The kicker is that Web Components are a web standard. The half-decade argument about what the lifecycle methods should be called, what they should do, and how it should all fit together has concluded. What's shipping in Chrome and Safari and Opera and Samsung Internet and UC Browser today is not something that can change easily (for better and for worse). This is a contract that a major fraction of the web relies on; it cannot be removed. The browsers that haven't shipped yet are under huge pressure to do so.

If you're a tech-lead or manager for a web team, it's time to consider how and when you'll transition to Web Components and what value frameworks add when most of their function has been supplanted by the platform. Forward-looking teams like Ionic are making this transition, and the results are incredible.

Many abstractions and tools that were developed in the context of a specific framework may come unglued, and a large-scale re-orientation of the framework landscape is likely. What remains will be systems that provide value further up the stack and tout interoperability as a feature.

Beyond Interop

In the talk I gave a few weeks back at the Polymer Summit, I went into detail about the performance motivations for some of the original Parkour work:

One of the best outcomes from delegating our component model to the platform is that, when we do, many things get cheaper. Not only can we throw out the code to create and manage separate trees, browsers will increasingly compete on performance for apps structured this way. Work over the past year in Chromium has already yielded significant speedups for Custom Elements and Shadow DOM, with more on the way. Platform-level scoping for CSS via Shadow DOM has enabled sizable memory and compute wins for style resolution, and overall re-architecture of the system benefits custom elements in ways that user-space won't benefit from as significantly.

Ignoring all of that, Mikeal's core point resonates strongly:

Our default workflow has been complicated by the needs of large web applications. These applications are important but they aren’t representative of everything we do on the web, and as we complicate these workflows we also complicate educating and on-boarding new web developers.

One of the things we'd hoped to enable via Web Components was a return to ctrl-r web development. At some scale we all need tools to help cope with code size, application structure, and more. But the tender, loving maintenance of babel and webpack and NPM configurations that represents a huge part of "front end development" today seems...punitive. None of this should be necessary when developing or using one (or a few) components. Composing things shouldn't be this hard. The sophistication of the tools should be proportional to complexity of problem at hand. Without a common component model, that will never be possible.

I'm excited we're finally there.

Older Posts

Newer Posts